Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress
نویسندگان
چکیده
Heat stress transcription factors (HSFs) compose a large gene family, and different members play differential roles in regulating plant responses to abiotic stress. The objectives of this study were to identify and characterize an A2-type HSF, FaHsfA2c, in a cool-season perennial grass tall fescue (Festuca arundinacea Schreb.) for its association with heat tolerance and to determine the underlying physiological functions and regulatory mechanisms of FaHsfA2c imparting plant tolerance to heat stress. FaHsfA2c was localized in nucleus and exhibited a rapid transcriptional increase in leaves and roots during early phase of heat stress. Ectopic expression of FaHsfA2c improved basal and acquired thermotolerance in wild-type Arabidopsis and also restored heat-sensitive deficiency of hsfa2 mutant. Overexpression of FaHsfA2c in tall fescue enhanced plant tolerance to heat by triggering transcriptional regulation of heat-protective gene expression, improving photosynthetic capacity and maintaining plant growth under heat stress. Our results indicated that FaHsfA2c acted as a positive regulator conferring thermotolerance improvement in Arabidopsis and tall fescue, and it could be potentially used as a candidate gene for genetic modification and molecular breeding to develop heat-tolerant cool-season grass species.
منابع مشابه
Up-Regulation of HSFA2c and HSPs by ABA Contributing to Improved Heat Tolerance in Tall Fescue and Arabidopsis
Abscisic acid (ABA) is known to play roles in regulating plant tolerance to various abiotic stresses, but whether ABA's effects on heat tolerance are associated with its regulation of heat stress transcription factors (HSFs) and heat shock proteins (HSPs) is not well documented. The objective of this study was to determine whether improved heat tolerance of tall fescue (Festuca arundinacea Schr...
متن کاملIdentification and Validation of Reference Genes for Quantification of Target Gene Expression with Quantitative Real-time PCR for Tall Fescue under Four Abiotic Stresses
Tall fescue (Festuca arundinacea Schreb.) is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is impor...
متن کاملتأثیر قارچهای اندوفایت بر خصوصیات فیزیولوژیکی و مقاومت به سرما در دو گونه فسکیوی مرتعی و فسکیوی بلند
To determine the role of endophytes in conferring valuable physiological characteristics on and induction inducing cold tolerance in two species of festuca, an experiment was done at Isfahan University of Technology in 2002. Endophyte-infected and non-infected clones from two genotypes of tall fescue and one meadow fescue were prepared and coded 75,83 and 60 respectively. The clones were expose...
متن کاملتأثیر قارچهای اندوفایت بر خصوصیات فیزیولوژیکی و مقاومت به سرما در دو گونه فسکیوی مرتعی و فسکیوی بلند
To determine the role of endophytes in conferring valuable physiological characteristics on and induction inducing cold tolerance in two species of festuca, an experiment was done at Isfahan University of Technology in 2002. Endophyte-infected and non-infected clones from two genotypes of tall fescue and one meadow fescue were prepared and coded 75,83 and 60 respectively. The clones were expose...
متن کاملComparative study of diversity based on heat tolerant-related morpho-physiological traits and molecular markers in tall fescue accessions
Heat stress is a critical challenge to tall fescue (Festuca arundinacea Schreb.) in many areas of the globe and variations in genetic structure and functional traits is for the efficient breeding programs on developing heat tolerant cultivars. Tolerant-related morpho-physiological traits and simple sequence repeat (SSR) markers were employed to survey genetic diversity in greenhouse and growth ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2017